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Summary. An implementation of the reduced multiplication scheme of the 
Rys-Gauss  quadrature to compute the gradients of electron repulsion integrals is 
discussed. The study demonstrates that the Rys-Gauss  quadrature is very suitable 
for efficient utilization of simplifications as offered by the direct computation of 
symmetry adapted gradients and the use of the translational invariance of the 
integrals. The introduction of the so-called intermediate products is also demon- 
strated to further reduce the floating point operation count. Two prescreening 
techniques based on the 2nd order density matrix in the basis of the uncontracted 
Gaussian functions is proposed and investigated in the paper. This investigation 
gives on hand that it is not necessary to employ the Cauchy-Schwarz inequality to 
achieve efficient prescreening. All the features mentioned above were demonstrated 
by their implementation into the gradient program ALASKA. The paper offers a 
theoretical and practical assessment of the modified Rys-Gauss  quadrature in 
comparison with other methods and implementations and a detailed analysis of the 
behavior of the method as suggested above as a function of changes with respect to 
symmetry, basis set quality, molecular size, and prescreening threshold. 
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1 Introduction 

The recent year's outburst of publications on the subject of the computation of 
two-electron integrals has not only presented quite a number of new methods or 
algorithms in this field but has also made it more or less impossible to compose an 
introduction to the subject which will not give the initiated reader a feeling 
ofdeja vu (this statement holds also for the section of definitions). However, a small 
summary of previous work and a motivation for the presented work is mandatory. 

The fuse to the new interest in novel electron repulsion integral (ERI) 
algorithms was the publication in 1986 of the Obara-Saika [1] (OS) recurrence 
relation. This expression facilitates a speedy evaluation of the primitive ERI's 
when implemented on a vector computer. This work was followed by Head-Gor- 
don and Pople [2] (HGP) suggesting the new recurrence relation to be combined 
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with the use of the transfer equation [3] (denoted the horizontal recurrence 
relation (HRR) in their work). With the HGP method one initially generates a 
set of intermediate ERI's in the primitive base with the OS recurrence relation (the 
relation denoted the vertical recurrence relation (VRR) by HGP is a special case 
of the OS recurrence relation). The second phase of the HGP is then performed 
in the contracted basis where the application of the transfer equation (HRR) will 
produce both the ERI's and the first order derivatives with respect to the centers 
of the basis functions. An addition of a third recurrence relation was introduced 
independently by Hamilton and Schaefer [4] (HS), and by Lindh et al. [5] (LRL), 
to improve the performance even further. Quite recently Ryu et al. [6] suggested 
further improvements of the transfer equation for integrals of high total angular 
momentum by the observation that some of the steps in the algorithm are 
redundant and can be eliminated. In parallel Gill et al. [7] suggested yet a new 
method which is a synthesis of the McMurchie-Davidson [8] scheme and the 
transfer equation as applied by HGP. In this method, which is suggested to be 
superior to the modified HGP (HS or LRL) method, the authors introduced the 
concepts of early and late contraction (transformation from the primitive basis 
to the AO basis), respectively. This has recently been extensively used in the 
BRACKET method of Gill et al. [9] and in the PRISM method by Gill and Pople 
[10]. These new methods are flexible such that optimal performance is achieved 
regardless of the degree of contraction. The methods mentioned so far have the 
following ingredients in common; i) they produce contracted ERI's and/or 
derivatives of ERI's, and ii) the efficiency is associated with the recurrence relation 
using the redundancy when all the elements in a shell quadruplet are produced. 

As a contrast to these methods we have the Rys-Gauss quadrature [3] which 
is based on a simple recurrence relation for the so-called two dimensional (2D) 
integrals (also called subsidiary functions) and an assembling of the primitive 
integrals from these 2D-integrals. This method has over the years earned a good 
reputation due to a number of successful implementations such as the I4ONDO [ 11], 
CADPAC [12], and GRADSCV [13] quantum chemistry program packages and now 
recently in the integral program SEWARD [5]. The Rys-Gauss quadrature is 
known for its simple structure. However, the method does not offer any flexibility 
such as early and late contraction. Furthermore, the method was known to 
perform poorly for ERI batches of low total angular momentum. LRL, however, 
showed in their paper in 1991 that with the introduction of the reduced 
multiplication scheme the method is very competitive and is outstanding in the 
case of low degree of contraction [5]. 

In the computation of molecular gradients the force is computed as the trace 
of the effective (also called the variational) density/Fock matrices and the integral 
derivatives [14]. It is important to note that the basis in which the trace is 
performed can be any in the range from the primitive basis of Gaussian or Hermite 
functions to the symmetry adapted molecular orbital basis. Combined with the 
information that the contraction step in ordinary ERI evaluation takes 15-25 
percent of the total CPU time one can argue if the integral derivatives should be 
traced in the contracted or the primitive base, i.e. if the gradient should be 
contracted to the AO basis or if the 2nd order density matrix should be 
backtransformed to the primitive basis (decontraction). Following the HGP 
method one has to contract the intermediate integrals in four different ways (the 
differentiation puts the Gaussian exponent in front of some integrals) whereas the 
calculation of the primitive integral derivatives would require one decontraction 
of the 2nd order density matrix (in the case of a correlated wavefunction). 



Rys-Gauss quadrature: reduced multiplication 425 

The list of intermediate integrals is somewhat smaller than the list of the 
elements in the 2nd order density matrix. However, the difference is small 
(especially for batches of low total angular momentum) and will not compensate 
for the fact that the contraction step will be about four times as expensive as the 
corresponding decontraction. The situation in the comparison to the BRACKET 
and PRmM method is similar although the set of intermediate entities is some- 
what smaller as compared to the HGP method. In addition to this reason for the 
decontraction of the second order density matrix we note that the atomic natural 
orbital (ANO) basis sets [15] as initially introduced by Alml6f and Taylor [16] 
are of Raffanetti type [17], i.e. the contracted basis functions have the same set 
of Gaussian exponents in common. Hence, an efficient prescreening can only be 
achieved if executed in the uncontracted basis. This matter is actually quite 
crucial since efficient screening will reduce the CPU time with a factor of about 
two or more [18]. The conclusion from these facts is that methods which 
generate the primitive integral derivatives fast will have an advantage as com- 
pared to other methods. The Rys-Gauss quadrature is such a method. 

In the computation of gradients there are a few relations and constraints 
which can be used to reduce the computational effort. These are symmetry, and 
translational invariance of the integrals. In methods in which the efficiency of the 
gradient evaluation depends on the use of complete shells these simplifications 
will be difficult to fully exploit. This is not the case with the Rys-Gauss 
quadrature. In addition to this the Rys-Gauss quadrature does not require as 
much memory as other methods. This is a very critical point especially for the 
gradient calculations of ANO type basis sets. 

We will in the coming section show how the Rys-Gauss quadrature in com- 
bination with efficient reuse of intermediate products, full utilization of symmetry 
constraints, as well as the translational invariance of the primitive integrals, the 
decontraction of the 2nd order density matrix, and efficient prescreening offers an 
attractive way of computing molecular gradients. The presented variation of the 
Rys-Gauss quadrature for the evaluation of the integral derivatives will mainly be 
in line with the method as suggested by Amos [19] and Dupuis [20] as compared to 
the approaches suggested by Saxe et al. [21] and Schlegel and coworkers [22]. The 
present method has been implemented in the integral gradient program ALASKA 
which has been interfaced with the quantum chemistry package MOLCAS-3 [23]. 

2 Theory 

We will in this section assume that the reader is familiar with the normal notation 
used for the Rys-Gauss quadrature, ERI's and Gaussian functions. Otherwise we 
recommend the reader to study the theory section in LRL [5]. 

2.1 Integral gradient evaluation 

In the Rys-Gauss quadrature the ERI's are expressed as: 

(abl~U) = 2  KA=KC. \~)  \~ j  
n Rys 

x ~, Fx(ax, bx, Cx, dx:t=)I'y(ay, by, cy, @:t~)Z'z*(a=, b=, c:, d=:t=). (1) 
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where a, b, e, and d are the angular momentum vectors of the Gaussian basis 
functions (the exponents c¢, fl, 7, and 6 or the centers A, B, C, and D are not 
explicitly referenced), ~, (, and t /are  functions of the Gaussians exponents, ~:A~ 
and ~ccD are factors due to the products of the two Gaussian functions of each 
charge distribution, and I;. are the 2D-integrals (the superscript asterisk on the 
z-component indicate that these 2D-integrals have been multiplied with the 
weights associated with the Rys-Gauss  quadrature). The corresponding gradient 
of the ERI is computed by substituting the appropriate 2D-integral by its first 
order derivative. The first order derivative of a 2D-integral with respect to a 
nuclear coordinate, E, is computed as [19, 20]: 

OI'~(a;., bj~, c;., d;~) 
= 6Ae[a~I'a(a2. -- 1, b~, c~, d;~) - 2c~I~ (a~ + 1, bx, c;~, dx)] 

--  2flI'~(a~, fl~ + 1, c~, d~)] 

- 2yli(a~., b~, c~ + 1, d;~)] 

- 26Ii(a~,  b~, cx, c~, d~ + 1)], 

+ 6BE[bjJ'~(ax, bx - 1, c~, dx) 

+ 6ce[C~I~(ax, bx, c.t - 1, dx) 

+ @e[dxI; .(ax,  ba, cx, d~ - 1) 

2 = x , y ,  z. (2) 
At this point we notice that in contrast to the recursive methods (HGP,  PRISM 
and BRACKET) in which derivatives of ERI's of three or fewer centers can not be 
computed directly the Rys-Gauss  quadrature will compute these gradients in 
one step as: 

8Ex - 2  ~CASKCD\~/I \~j ~ ,= ,  8E x 

x I'y(ay, by, Cy, dy:t~)I'~*(az, bz, Cz, d. : t~), (3) 

whereas the recursive methods will employ: 

8(able  - O(able"9 +" O(ab led) 

SEx 8A x c3Bx 

+ led) . o Ic"9 
- -  + ODE - -  (4) 

8Cx 8Dx " 

The efficiency of the Rys-Gauss  quadrature is associated with the much lower 
expense of computing the derivative of the 2D-integrals as compared to the 
ERI's. Furthermore, although some reduction in the FLOP count can be 
achieved when all gradients of a shell quadruplet are computed as will be 
discussed below we would like to stress that the Rys-Gauss  quadrature is not as 
dependent as the recursive method on this situation in order to achieve a low 
CPU expense per gradient. This allows for a simple and efficient utilization of 
symmetry constraints. We note in particular that we only need the gradients with 
respect to those centers which will form symmetric displacements. This observa- 
tion holds equally true if the calculation is performed in a double coset 
formalism [24] or in a petite list format [25]. The symmetry restriction will be of 
use since it will avoid the computation of quite a number of integral gradients 
(e.g. for a planar molecule we do not need the displacements out of the plane). 
For  each redundant gradient which will not be computed we will reduce the 
computational effort of assembling the gradients of a shell quadruplet with about 
1/9 as compared to computing all 9 gradients. 
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2.2 The reduced multiplication scheme 

At this point we will introduce the intermediate products and the reduced 
multiplication scheme which will reduce the FLOP count further as compared to 
the traditional implementation of the Rys-Gauss quadrature. In the case of a 
four center ERI we will compute the gradients of three centers. The translational 
invariance of the integral gives the fourth gradient. The most efficient utilization 
of this restriction is not to compute the missing gradient directly but rather its 
contribution after contraction with the density matrix (all 12 integral gradients 
are contracted with the same 2nd order density matrix). Hence, for the four 
center cases we will for each cartesian component compute three different 
gradients. These gradients have the same undifferentiated part in common (the 
product of two 2D-integrals), see Eq. (3). This will form our intermediate 
product. Thus the FLOP count for assembling of the three gradients of a 
cartesian component of a shell quadruplet will reduce from ( 9 ,  nRy s - - 3 )  to 
(7 • nRys - 3), i.e. the savings are 50, 36, and 33% for the 1st order derivatives 
of the integral batches up to and equal to (ss]ss), (pp[ss), and (pp[pp), 
respectively. In addition to this some caution will have to be applied to the 
formation of the intermediate product since the 2D-integrals with a total angular 
index of zero have the value of unity. In these cases the intermediate product is 
directly defined by the 2D-integral with a total angular momentum different from 
zero and in some cases the integral derivative is simply the sum of the differenti- 
ated 2D-integral when both the undifferentiated 2D-integrals have a total 
angular momentum of zero. Some restriction of this rule has to be applied since 
the weight is carried by the z-component 2D-integral, i.e. the z-component will 
always have to be included in the assembling of the integral derivative. 

2.3 Prescreening 

The general molecular gradient formula is expressed in the molecular orbital 
(MO) basis as [14]: 

E(1) ~ / )  h(1) 1 = ~ --Pq"Pq ~- 2 E Ppqrs(Pq Irs) (1) - ~ g p q ( p  Iq) (1) (5) 
pq pqrs pq 

where Dpq, Ppqrs, and Fpq are the wavefunction dependent effective first order 
density matrix, second order density matrix, and Fock matrix, respectively, g(p~q ), 
(pqlrs) (1), and (plq) (1) are the first order derivatives of the one-electron hamilto- 
nian, the two-electron integra ! and the overlap integral, respectively, and all are 
independent of the wavefunction. The time consuming part of the evaluation of 
the molecular gradient is of course due to the contributions from the two-elec- 
tron integrals. This contribution to the total CPU time, however, can be 
significantly reduced by proper prescreening. This has successfully been imple- 
mented for the SCF type of wavefunction [ 18] by Horn et al. In their implemen- 
tation the Cauchy-Schwarz inequality was used to estimate the integrals and 
their associated gradients. These estimates combined with the first order density 
matrix formed the base for the prescreening. In a correlated wavefunction, 
however, we have to combine the estimated integrals and gradients with the 2nd 
order density matrix in order to achieve the most sensitive prescreening. This 
requires some more delicate handling as compared to implementations of gradi- 
ents of SCF wavefunctions in order for the prescreening itself not just to form a 
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new bottleneck in the gradient calculation. We will below sketch two such 
procedures based on the second order density matrix. I t  would, of  course, be 
possible in the case of  a correlated wavefunction to approximate the 2nd order 
density matrix in the prescreening as a product of first order densities and to 
maintain a prescreening procedure similar to that one in a SCF wavefunction. 
However, such a scheme would assign the value of zero to all those elements of  
the 2nd order density matrix which are not total symmetric on the two first 
indices. It  is most  likely that such an approximation will at least in some cases 
be impossible. 

The decontraction of the 2nd order density matrix as discussed in the 
introduction is a critical part  of  the efficiency of  the implementation. This also 
leaves us with the possibility to multiply the prefactor (the factor before the 
summation sign) with the integral derivative as suggested above (see Eq. (3)) or 
to modify the decontracted 2nd orde r density matrix with the same factor. For 
the same reason that we chose to decontract the 2nd order density matrix we will 
multiply it with the prefactor. This is also a step in the direction towards an 
efficient prescreening. For  reasons of clarity let us reformulate the summation 
over the two-electron integral contribution to the gradient. This is in order to 
introduce a more appropriate notation since the actual calculation for reasons of  
efficiency is carried out in the primitive basis and the integral batches are 
computed as complete shell quadruplets. Hence, we will introduce a reference to 
the Gaussian exponent and to the component  of  the angular part  of  the 
Gaussian basis function. Thus the two-electron gradient contribution is formu- 
lated as: 

" ' ' - t - 1 2  2 e~,abcd( ablcd)~2 " '"  (6) 
~1 abcd 

where a, b, c, and d are the indices of  the components of  the angular function 
and ~ and tt are the Gaussian exponents of  the charge distributions due to the 
Gaussian basis functions of  center A and B, and C and D, respectively. In the 
formalism of the R y s - G a u s s  quadrature we would express the same formula as: 

" ' ' + 1  2 ~ P~rl,abcd 
~l abcd 

nRy s 
i ¢ t~e × ?E~.~=l ~ Ix(ax' bx, c~, dx :t~)Iy(ay, by, Cy, dy't~)Iz (az, bz, cz, dz : t~). • • 

(7) 

where the modified 2nd order density matrix is defined as: 

P'~,,,abcd = 2 ~,7) KABKCO X P~n,abce (8) 

Let us also note that in order for the prescreening on the second order density 
matrix to be efficient there has to be a compromise between a straightforward 
implementation and a maybe less strict approach. The former will be hard to 
adapt  to a vectorizable implementation whereas the latter can be formulated with 
the aim of not only facilitating some sort of  prescreening but also to constitute 
an algorithm tailored for a computer implementation. 

In our first procedure we will base the prescreening directly on the value of 
the modified 2nd order density matrix. In this approach we will assume that the 
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sum over weighted quadrature points will add up to unity or less. To justify this 
statement to some degree consider the sum over weighted quadrature points for 
the shell quadruplet (ss Iss). In this particular case the product of the subsidiary 
functions have the value of unity and the weight is identical to the zeroth order 
incomplete gamma function, Fo(T ) = S 1 dx e -rx2. We observe immediately that 
Fo(T) ~< 1. Hence, our prescreening will form an upper bound in this case. For 
shell quadruplets of a total angular momentum higher than this our estimate will 
no longer form an upper bound to the estimated contribution to the energy/gra- 
dient. To facilitate the prescreening we will need to form: 

( ~  V gp'  "~2~1 
W(t/)~ = z_. t :,,abca~ / "  (9) \ - y  

a ,b ,c ,d  i /  

The value of this norm is compared to the threshold and based on this 
comparison we will either compute all gradients associated with the index ~ or 
not. This procedure is repeated a second time with respect to the index t/ in 
order to complete the prescreening. This procedure will in the forthcoming 
sections be denoted the "2nd order density matrix only method" (2DO). 
Observe the similarity of this method and the traditional prescreening method 
which is based on the radical overlap (see Horn et al. [18] Eq. (29)). However, 
the present implementation does also include the factor due to the transforma- 
tion of the variable of integration of the incomplete gamma function. Hence, 
the estimate of the integral/gradient will include some coupling between the two 
charge distributions. 

The second method will base the gradient estimate on the Cauchy-Schwarz 
inequality. This means that the gradients will be approximated with an expres- 
sion which is an upper bound to the exact value and is expressed as: 

[(aib I I < l( a~b I I I(cdlcd) ,  I (10) 
where the superscript i indicates a differentiation. For an efficient implementation 
we will form the following entities: 

(ab)c = I(ab lab)~,¢ 1½, (11) 

and 

1_ i ~ ± (ab)  = I(aib laib) ,c 12 + l(ab [ab) ,c [2 (12) 

For the last entity the asterisk indicates that we will sum 1st order differentia- 
tions in all possible directions with respect to any of the centers for displace- 
ments belonging to the total symmetric representation. These 2nd order 
derivative integrals are in the current implementation evaluated by 2nd order 
numerical differentiation. The prescreening threshold will now be compared with 
the value of: 

Q(rl)~ = ~, 2 (P~,,abca X {(ab)~(cd), + (ab)¢(cd)* })2 , (13) 
t 1 abcd  

and a similar expression with respect to the Gaussian index t/. This procedure 
will in the forthcoming sections be denoted the "'2nd order density matrix and 
integral estimate method" (2DI). Observe that Q reduces to W when the integral 
gradient estimate is replaced with unity. 
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Let us note a technical detail in comparison with the implementation of 
Horn et al. which will be of importance for the analysis of the performance of 
the implementation. As the prescreening is suggested here we do not look for 
the largest element but we rather form some sort of a norm. This will mean 
that in case we have a large number of contributions which one by one is 
below the threshold we will still include these in the summation. Hence, this 
approach could be expected to be somewhat more stable. The success of  the 
presented methods is very much dependent on the implementation and below 
follows a short description of the loop structure of  the 2-electron integral 
gradient driver as implemented in ALASKA. The symmetry handling in the 
program is the double coset representative (DCR) technique due to Davidson 
[24, 26]. 

LOOP OVER S Y M M E T R Y  A D A P T E D  SHELL A 

LOOP OVER S Y M M E T R Y  A D A P T E D  SHELL B 

LOOP OVER S Y M M E T R Y  A D A P T E D  SHELL C 

LOOP OVER S Y M M E T R Y  A D A P T E D  SHELL D 

G A T H E R  ~pq,abed IN S O  BASE 

LOOP OVER D C R  O P E R A T O R  

LOOP OVER D C R  O P E R A T O R  

LOOP OVER D C R  O P E R A T O R  ' r  

D E S Y M M E T R I Z E  .tpq,abc d TO A O  BASE 

PROJECT Ppq,abed ON THE PRIMITIVE BASE 

M U L T I P L Y  P~e,abed W IT H P R E F A C T O R  

TRANSPOSE P'~e,abcd TO P'e,abcd,~ 
C O M P U T E  W(r/)~ OR  Q(q)¢ 
LOOP OVER 

SKIP IF WC OR Q~ LESS T H A N  T H R E S H O L D  

G A T H E R  D A T A  

NEXT 
! / 

TRANSPOSE Pe,abca, C TO eabcd,~',e 
C O M P U T E  W ( ~ ' ) e  OR Q(~')e 
LOOP OVER t/ 

SKIP IF W e OR  Qe LESS T H A N  T H R E S H O L D  

G A T H E R  D A T A  

NEXT t/ 

TRANSPOSE P abcd, C,e" TO P~',e',abcd 
C O M P U T E  G R A D I E N T S  A N D  C O N T R A C T  W I T H  P~',e',abcd 

NEXT 

NEXT 

NEXT 

NEXT SHELL D 

NEXT SHELL C 

NEXT SHELL B 

NEXT SHALL A 

We will in the coming section demonstrate the efficiency of the algorithms as 
outlined above. This will be both in the form of theoretical FLOP counts and 
as comparisons between the integral gradient program ALASKA and other 
implementations. 



Rys-Gauss quadrature: reduced multiplication 431 

3 Performance assessment 

3.1 Theoret ical  F L O P  count  

Before we make a comparison with other methods let us compare the present 
method with what would be a traditional implementation of the Rys-Gauss  
quadrature. The FLOP count for two typical shell quadruplets are listed in Table 
1. From this compilation we see that the new method will reduce the total FLOP 
count at the uncontracted level with about 20%. 

In the traditional analysis of the FLOP count it is standard to divide the 
algorithm into three sublevels according to the procedure suggested by Hegarty 
and van det Velde [27]. These levels are the K 4, the K 2, and the K ° levels which 
correspond to the uncontracted, the half contracted, and fully contracted inte- 
grals, respectively. To each of  these levels are assigned constants x, y, and z, 
respectively, which represent the FLOP count associated with manipulating the 
integrals in each level of contraction. At the time of developing this procedure to 
analyse the benefits of a given integral method it was assumed that basis sets 
were of the segmented type. This explains why the FLOP count of the contrac- 
tion step, c * ( m 4 M  -t- m 3 M  2 -'k m 2 M  3 -t- m M  4) where rn is the number of Gaus- 
sian exponents of a shell and M is the number of contracted functions of  the 
same shell, dose not put an explicit M dependency into x (M -- 1 for a segmented 
basis set). To correct for this deficiency of earlier investigations we will in this 
paper explicitly list each contribution. The FLOP counts of  the present method 
and the HGP  method are presented in Table 2. The comparison is limited to 
these two methods due to the limited data available in the literature. It is quite 
clear, however, that the earlier conclusion still holds that the BRACKET and 
PRISM methods will suffer when state of the art basis sets are used. In the 
generation of the H G P  numbers in Table 2 we have from the x parameter 
subtracted the contribution from the contraction. Assuming that the integrals 
have been premultiplied with the contraction coefficient in a K 2 loop we associate 
the contraction with 1 FLOP per entity to contract. In the new contraction, 
however, we will assume no premultiplication and the contraction step will carry 
2 FLOP per entity to contract. The number of entities to contract in the H G P  

Table 1. FLOP count for a traditional implementation of the Rys-Gauss 
quadrature and the reduced multiplication scheme for some shell quadruplets. 
The FLOP count is for the computation of 9 of the 12 possible cartesian 
gradients of a shelI quadruplet 

Shell quadruplet: (ss Iss) (pp [pp) 

Step a b a b 

Roots and weights 13 13 78 78 
2D-integrals 39 39 246 246 
Transfer equation 6 6 532 532 
Diff. 2D-integrals 3 3 216 216 
Assembling of gradient 24 6 5832 4269 

Total 85 67 6904 5341 

a Traditional implementation; b present method 
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Table 2. FLOP count for the HGP method and the reduced multiplication scheme 
of the Rys-Gauss quadrature for two typical shell quadruplets. The FLOP count 
is for the computation of 9 of the 12 possible cartesian gradients of a shell 
quadruplet a 

Shell quadruplet: (ss [ss) (pp [pp) 

Scaling level HGP Present HGP Present 

Mm 4 20 2 1116 162 
m 4 (x) 85 + 1S 67 + 1S 2742 + 1S 5341 + 1S 
M2m 3 20 2 1116 162 
M3m 2 (y) 20 2 1116 162 
M2m 2 0 0 0 0 
M4m 20 2 1116 162 
M 4 (z) 3 6 3100 6 

a S indicates a square root 

methods were computed to be 10, and 558, respectively, for the shell quadruplets 
of (sslss), and (pplpp), respectively. The first thing to note from Table 2 is 
obviously that the most  expensive step in the gradient calculation scales as m 4 M  
rather than m 4. TO further analyse the merits of  the two methods it will be 
illustrative to compile the actual flop counts for the two shell quadruplets for the 
basis sets (6s3p/2slp),  and (14s9p/6s5p), respectively. These basis sets corre- 
spond to the STO-3G and ANO basis of  carbon and would represent the two 
extremes of a 1st row basis set. For the (ss ]ss) shell quadruplet we have 185 and 
95 kFLOP for the H G P  and the present method, respectively, for the STO-3G 
type of basis. The same numbers for the A N O  basis are 11.1 and 3.4 MFLOP,  
respectively. For  the (pplpp) shell quadruplet of  STO-3G we have 359 and 
452 kFLOP for the H G P  method and the present method, respectively. As the 
corresponding numbers for the basis of  A N O  type we find 94 and 46 MFLOP,  
respectively. These figures show that at least theoretically the reduced multiplica- 
tion scheme of the R y s - G a u s s  quadrature is competetive in the STO-3G range 
of basis sets and gets increasingly superior for larger basis sets. 

Let us also mention an advantage of the R y s - G a u s s  quadrature in conjunc- 
tion with direct implementations of  correlated methods. Here one will generate 
a partial integrals list with at least one SO index fixed. In the case of  a basis set 
of  general contraction type this will be rather inefficient and result in much 
redundant work since some of  the basis functions will have the same primitive set 
in common. Hence this fact advocates that the fixed index should be kept in the 
primitive basis and presumably not transformed to the contracted basis until the 
summation over the free indices is performed. Judging f rom the superior 
theoretical FLOP count of  the R y s - G a u s s  quadrature for primitive basis set it 
must be regarded as strong candidate for the implementation in such a direct 
scheme. 

3.2 Comparison with other implementations 

In this section we will do a brief comparison with some other implementations 
of  ab initio gradient techniques as implemented on an IBM RISC System/6000 
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550 machine. The implementations to compare with are the TURBOMOLE [28] 
and ABACUS [29] quantum chemistry programs. The former is based on the 
Rys-Gauss  quadrature and the latter is based on the McMurchie-Davidson 
scheme [30]. The programs also have two different approaches towards symme- 
try. While TUrtBOMOLZ works with the petite list [31] approach ABACUS and 
ALASKA employ the double coset representative approach [26]. The reason for 
this difference is primarily historic. Whereas TURBOMOLE is especially tailored 
for the SCF type wavefunction both ABACUS and ALASKA are developed with the 
aim for calculation of  correlated wavefunctions. The two-electron integral trans- 
formation which is an essential step in most post-SCF procedures was not 
practically possible with petite list until quite recently [32, 33]. Hence, the 
different choice of incorporating symmetry in the package. The analysis here is 
not to judge these aspects of the computation. Thus, we will primarily compare 
the integral times excluding time due to symmetrization when we compare 
TURBOMOLE with the present implementation while comparisons with ABACUS 
will include the symmetrization time too. Furthermore, when prescreening is of  
importance we will select the same prescreening thresholds for the different 
packages. This will not make the comparison clear cut since the program 
packages employ different prescreening methods. As a matter of fact, for 
molecules for which the prescreening is of  importance a more elaborate compari- 
son involving several thresholds and a comparison of the resulting errors in the 
computed gradients would have to be employed in order to do a fair comparison 
if we were to monitor how effective the prescreening is or a calculation of  the 
gradients with a zero threshold would have to be employed if we were to 
compare how effective the gradient formation is for molecules where the four 
center integrals dominated the ERI list. We will not in this paper, however, 
involve us with too complicated comparisons but do rather present the CPU 
times as they are if default thresholds are chosen. The calculations will be made 
for the four molecules acetylene, cubane, 2-pentenal, and chlorofluoromethanol. 
The first two molecules exhibit high symmetry and the latter two have no 
symmetry at all. The calculations of cubane and 2-pentenal will be dominated by 
the four-center integrals. The 2-pentenal molecule is in the trans 2-pentenal 
(CH3CH2CH~---CHCHO, methyl gauche and CO syn the double bond) configu- 
ration. The basis sets employed are the STO-3G [34], the DZP [35], the TZ2P 
[36], and the average ANO [15] basis sets. The ANO basis sets will be used with 
two different shell extensions. The molecules have all been relaxed with respect 
to the SCF energy. The SCF energies and some geometrical parameters of  the 
molecules mentioned above are listed in Tables 3-6.  Observe that we employ the 

Table 3. The SCF energy and the geometrical parameters of acetylene, C2H2, for 
some basis sets 

Basis set EscF /hartree Rcc /A Rcz-i /A 

STO/3G - 75.856248 1.168 1.065 
DZP -76.831724 1.192 1.061 
TZ2P - 76.850024 1.180 1.055 
ANO(spd) a - 76.852607 1.180 1.054 
ANO(spdf) b -- 76.856268 1.180 1.054 

a Contracted to C(6s5p3d) and H(3s2p); b Contracted to C(6s5p3d2f) and 
H(3s2p3d) 
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Table 4. The SCF energy and the geometrical parameters of cubane, C8H8, for 
some basis sets 

R. Lindh 

Basis set Esce /hartree Rcc /]~ RCH /• 

STO-3G - 303.781400 1.562 1.086 
DZP - 307.447488 1.560 1.083 

Table 5. The SCF energy and some geometrical parameters of the trans 2-pentenal molecule, 
CH3CHz~CHCHO, for some basis sets a 

Basis set EscF/hartree bond/A angle/deg dihedral/deg dihedral/deg 
C=C CCO CCCO CCCC 

STO-3G -265.470279 1.316 124.1 0.3 120.2 
DZP -268.892751 1.330 125.2 0.3 120.7 

a A full list of the geometrical parameters is available from the author 

Table 6. The SCF energy and some geometrical parameters of the chlorofluoromethanol molecule, 
C1FCHOH, for some basis sets a 

Basis set Esm,/hartree Rczc/~ RFC/~ Rco/~ C1CF L/deg COH //deg 

STO-3G -665.012939 1.830 1.367 1.419 109.8 103.7 
DZP -672.835681 1.760 1.340 1.352 109.3 109.6 
TZ2P b -672.871934 1.763 1.336 1.350 109.0 109.7 

a A full list of the geometrical parameters is available from the author; b The chlorine basis is 
contracted as (lls7p2d/7s5p2d) with the exponents of 1.13 and .38 in the &shell 

pure spherical harmonic  components  o f  the basis functions o f  higher angular  
m o m e n t u m  for ALASKA whereas the other p rogram will use the cartesian 
representation. 

The C P U  time of  the various packages and molecules are collected in Table 
7. Let us here discuss the results molecule by molecule. However,  before we start 
note that  ALASKA is written for general wavefunctions and in addit ion to the 
normal  integral gradient computa t ion  it also performs a backt ransformat ion  of  
the 2nd order density matrix f rom A O  to primitive base and, in the case o f  
spherical harmonics,  a projection o f  the same to the cartesian representation. 
These steps normally constitute 1 5 - 3 0 %  of  the total time. Fur thermore,  to 
facilitate computa t ions  with A N O  basis sets and correlated wavefunctions the 
prescreening is performed on the 2nd order density matrix in the primitive basis. 
Hence, keep this in mind when compar ing  the timings with TURBOMOLE which 
is developed in particular for the SCF wavefunctions for which the 2nd order  
density matrix is defined by the 1st order density matrix, i.e. no four index 
t ransformat ions  are needed, and for which the prescreening is done on the first 
order density matrix in the contracted basis. 

First, the acetylene molecule is in the integral and gradient calculation 
dominated  by two- and three-center integrals and a lot is to be gained in 
efficiency if tr iangularization o f  symmetrical  matrices is properly implemented. 
Fur thermore,  we expect the influence o f  the prescreening on the computa t ion  
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Table 7. Timing in CPU seconds on a IBM RISC System/6000 550 machine, for ERI  integral and 
gradient evaluation for a series o f  molecules with different basis set. Bracketed numbers  include 
timing due to the symmetry treatment a 

SEWARD/ALASKA 

Integral Gradient 

ABACUS b TURBOMOLE 

Integral Gradient  Integral ° Gradient 

Molecule Basis 

C2H 2 STO-3G 0.39{0.40} 0.90{0.93} {0.59} {0.84} - -  2 
DZP 5.l{6.0} 10.4{11.1} {6.2} {11.8} - -  19 
TZZP 20{21} 33{34} {17} {35} - -  66 
ANO(spd) 100{102} 242{244} {78} {188} - -  a 
ANO(spdf) 432{446} 1211{1224} {329} {856} - -  a 

CsH 8 STO-3G 26{59} 74{126} {74} {313} - -  75 
DZP 418{2045} 821{3260} {2467} e - -  772 

2-pentenal STO-3G 59 121 78 183 - -  138 
DZP 1055 1567 1331 f f - -  1432 

C1FCHCOH STO-3G 9 26 12 30 - -  30 
DZP 128 242 166 546 - -  274 
TZ2P 560 733 619 r r - -  675 

a All calculations were performed at the relaxed geometry of the molecule with respect to the chosen 
basis set. The prescreening threshold, when available, was set at 10-7; b The ABACUS package does 
not  offer prescreening; ° TURBOMOLE is a direct SCF program and no explicit t iming for computing 
all integrals once is available; a The program cannot  handle general contraction explicitly; e The 
program aborted during the gradient formation due to a segmentation fatflt; f The program aborted 
during the formation of  the super matrix file due to disc storage problems 

time to be negligible. For  this molecule and for all basis sets where a comparison 
could be made we observe almost identical performance for S E W A R D / A L A S K A  

and ABACUS while TURBOMOLE is lagging behind with about a factor of  two. 
The performance of  ALASKA versus TURBOMOLE in the calculation of the 
gradients of the acetylene molecule could be an indication of  the improvement 
within the framework of  the Rys-Gauss  quadrature. However, it could just as 
well be due to no or poor  implementation of triangularization in TURBOMOLE. 
Furthermore, the slightly better performance of ABACUS as compared to ALASKA 
for the acetylene is most likely due to either a better implementation of the 
symmetry treatment or a reflextion of a better utilization of the simplifications 
which arise in the calculation of 3-, and 2-center ERI integrals. Second, the 
cubene molecule calculation is dominated by four-center integrals and the 
prescreening will be of importance in this case. For  this molecule we see a 
significant improvement by TURBOMOLE as compared to the acetylene calcula- 
tion. This could be due to the fact that the calculation here will not suffer from 
a poor  implementation of triangularization. The improved performance could 
also be due to much more efficient prescreening as compared with ALASKA.  This 
is, however, not very likely. What is quite evident though is that the poorer 
performance of ABAC US  for the molecule is mainly due to the lack of prescreen- 
ing in that package. In comparing the CPU times between ALASKA or ABACUS 
and TURBOMOLE o f  the cubene molecule we get a worst case comparison 
between double coset decomposition and the petite list implementation of 
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symmetry. The results here indicate that the former is so much more expensive 
for the higher point groups that it is worth while to implement a formation of 
the desymmetrized 2nd order density matrix directly from desymmetrized first 
order density matrices in the case of a SCF calculation. Third, for the 2-pentenal 
molecule conventional SCF calculations were possible, for STO-3G and DZP 
basis sets. Here we observe the same trend as for the cubene molecule with the 
exception that ABACUS and ALASKA do not carry any extra time due to 
symmetrization. The lack of prescreening facilities in ABACUS is making itself 
evident again. Fourth and final, the C1FCHOH molecule leaves us with much 
the same picture as the other molecules with the possible exception that it 
strongly advocates the usage of prescreening in compact molecular systems as 
well. There is no other way of explaining the poor  performance of ABACUS as 
compared to the other implementations. 

As a summary of this analysis we conclude that all three packages have very 
similar timings and for the differences are mainly due to prescreening and how 
the symmetry is implemented for the SCF wavefunction. These differences could 
easily be removed leaving the three packages with virtually the same perfor- 
mance. Hence, the choice of which package to use would then be guided by other 
aspect than the CPU time. 

In the coming subsections we will study i) the ability to utilize symmetry 
constraints, ii) CPU time as a function of the basis set quality, and iii) efficiency 
of prescreening of the present implementation, ALASKA. 

3.3 Symmetry constraints 

To monitor the ability to utilize the symmetry constraints with the presented 
method and its implementation into ALASKA we will study the CPU time of the 
integral and gradient evaluation of the acetylene molecule as we reduce the 
symmetry which is employed in the calculation (see Table 8). The results here 
show that the ratio of the CPU times for the gradient and integral evaluation 
increases as the utilization of the symmetry is reduced. This is exactly what we 
expect, i.e. the introduction of symmetry will not only reduce the shell quadru- 
plets which we will handle but also the gradients to compute of a particular shell 
quadruplet. This is especially apparent when we reduce the symmetry from D2h 
to C2~ by removing one of the mirror planes which is parallel to the bond of the 

TaMe 8. The CPU time in seconds of the integral and gradi- 
ent evaluation of acetylene, C2H2, for ANO(spd) basis set 
versus the symmetry point group utilized in the calculation. 
The number in parenthesis is the ratio gradient to integral 
CPU time 

Point group Integral Gradient 

D2h 102 247 (2.42) 
Czv 106 346 (3.26) 
C s 113 436 (3.86) 
C~ 216 795 (3.68) 
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molecule. In this case both calculations will have the same set o f  shell quadru-  
plets and the only computa t ional  difference is that  more  gradients per shell 
quadruplets  will be computed  in the latter case. It  is actually not  until we totally 
eliminate the symmetry  that  we will increase the number  o f  shell quadruplets  to 
take into consideration. Here we see that  the ratio o f  gradient to integral C P U  
time goes f rom 2.4 to a factor  o f  about  3.7 when we reduce the symmetry.  

3.4 Basis set versus C P U  time 

The results o f  Table 7 indicate the following general trends with respect to the 
basis set quality. Fo r  the basis set o f  STO-3G, DZP,  TZ2P, and A N O  we 
observe the ranges o f  the ratio for the gradient to integral C P U  time of  2 .0-2.9 ,  
1.5-2.0,  1.3-1.7,  and 2 .4-2.8 ,  respectively. The somewhat  poorer  performance 
of  the STO-3G in general is most  likely attr ibuted to a larger degree o f  overhead 
as compared  to the other basis sets. The results which we report  for the D Z P  and 
TZ2P  basis sets are exceptionally good  as compared  to other  methods which 
usually lie in the range o f  2 - 3 .  The A N O  basis sets tend to give rise to a 
somewhat  higher ratio. In particular we note that  the ratio does not  increase 
significantly as we include shells o f  higher angular  momentum.  This is very 
encouraging since it will allow us to do geometry optimizations o f  smaller 
molecules with state o f  the art  basis sets without  a too  large increase in the C P U  
time relative the integral time. 

3.5 Prescreening 

The 2-pentenal molecule with the D Z P  basis set was chosen as the probe  o f  the 
two prescreening methods suggested in this paper. The 2DO and 2DI  prescreen- 
ing methods were tested for various cut-off  thresholds, 5. In  Table 9 is recorded 
the relative C P U  time (relative to no prescreening) o f  the calculation versus the 
threshold and the root-mean-square  (RMS)  error o f  the gradient as compared  to 
the gradient computed  with no prescreening. Furthermore,  in Fig. 1 we plot  the 
relative C P U  time o f  the calculation versus - l o g ( R M S )  in order to moni tor  the 
efficiency of  the methods suggested here. The first impression f rom these calcula- 

Table 9. The relative CPU time for the gradient evaluation of the 2-pentenal molecule for a DZP 
basis set at the corresponding relaxed geometry versus the cut-off threshold, 0, and the root-mean- 
square (RMS) error of the gradient for the 2DO and 2DI prescreening methods. 

2DO 2DI 

0 RMS Percent CPU time RMS Percent CPU time 

10 5 1.91E - 3 22.0 5.00E - 4 26.5 
10 - 6  2.79E - 4 26.4 5.66E -- 5 31.6 
10 - 7  2.13E - 5 31.1 7.11E - 6 36.0 
10 s 2.16E-- 6 35.6 5.42E -- 7 40.6 
10 9 4.21E - 7 39.4 1.04E - 7 44.3 
i0-lo 3.29E -- 8 43.1 1.51E -- 8 49.3 
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Fig. 1. The accuracy of  the 
gradient of  the 2-pentenal 
molecule with a DZP basis 
set versus the relative CPU 
time for the evaluation of 
the gradient using the 2DO 
and 2DI prescreening 
methods.  The accuracy of  
the gradient is evaluated as 
the root-mean-square of the 
error of  the gradient as 
compared to no prescreening 

tions is that prescreening is of such an importance that it would be rather foolish 
not to use it in one form or another. However, it is noted quite surprisingly that 
the more sophisticated prescreening (2DI) is not more efficient than the the 2DO 
prescreening. This observation is in conflict with the study of Horn et al. who 
found that the use of a bounded integral gradient estimate will give a more 
efficient prescreening. Let us here point out the major differences in the two 
implementations in our search of a possible explanation to this disagreement. 
First, the prescreening by Horn et al. is implemented for the contracted 1st order 
density matrix whereas we apply the prescreening based on the uncontracted 
second order density matrix. Second, the Horn et al. implementation is based on 
finding the largest element of a given batch whereas the approach suggested here 
is using a norm technique. Third, the radial overlap approximation differs 
slightly between the two implementations. With the data given by this investiga- 
tion it is not clear which of these factors give the major contribution to the 
difference. However, let us note that in accordance with Horn et al. the 
prescreening based on the Cauchy-Schwarz inequality has a closer correlation 
between the chosen threshold and the actual accuracy of the computed gradient 
as compared to the prescreening based on the radial overlap. The relation 
between the threshold and the actual accuracy of the 2DI prescreening is as good 
as in the implementation of Horn et al. Hence, this excludes any errors in the 
implementation. Furthermore, the curve for the 2DO method is much smoother 
than the radial overlap approximation of Horn and coworkers. This could 
possibly either indicate some problems with the implementation in TURBOMOLE 
or as a sign that the version of the radial overlap approximation suggested here 
is superior. In addition, it is noted that the use of an upper bound for the 
integral etimated does not imply that the prescreening will be more efficient. The 
only obvious effect of using such an estimate is that the prescreening will be 
safer. 

4 Conclusions 

The reduced multiplication scheme of the Rys-Gauss  quadrature has been 
extended to the evaluation of the ERI 1st derivatives needed for the evaluation 
of the molecular gradient of ab initio energy functionals. Furthermore, simplifica- 
tions in the calculation of the 1st order derivatives of ERIs of two- and 
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three-central integrals by the Rys-Gauss quadrature have been introduced. 
Finally, two approaches to prescreening based on the 2nd order density matrix 
in the primitive basis have been presented. All the new methods have been 
implemented in the integral gradient program ALASKA. 

The major highlights of the study here is, i) the integral gradient evaluation 
scales as M m  4 rather than as m 4 in the case of basis set of general contraction 
type as compared to segmented basis sets, ii) the reduced multiplication scheme 
of the Rys-Gauss quadrature for the calculation of the integral derivatives is 
efficient and flexible as compared to other methods and implementation, iii) the 
method suggested here offers significant speedup in connection with the presence 
of symmetry in the molecule under study, iv) prescreening without bounded 
estimate of the integral gradient is demonstrated to be as efficient as other 
methods based on bounded estimates (Cauchy-Schwarz), and v) the method 
suggested here is well suited for correlated wavefunctions and for basis sets of 
general contraction type. 

Steps to extend the presented implementation to the MP2, MCSCF, and 
CASPT2 energy functionals are currently under way at this laboratory. 
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